RADemics

Big Data Handling
and Distributed Al
Workloads Using

PySpark and Dask
Frameworks

Vineeth V V, B. Persis Urbana lvy, S.

Senthil Kumar

UNIVERSITY OF TECHNOLOGY AND APPLIED
SCIENCES, MOTHER TERESA INSTITUTE OF ENGG
AND TECHNOLOGY, KARPAGAM ACADEMY OF
HIGHER EDUCATION



Big Data Handling and Distributed Al
Workloads Using PySpark and Dask
Frameworks

Vineeth V V, Lecturer, Electrical and Electronics Engineering, UNIVERSITY OF
TECHNOLOGY AND APPLIED SCIENCES, IBRA. PO Box 327 Ibra 400, Al Shargiya North,
Sultanate of Oman, Mail id: vineeth32@gmail.com.

2B. Persis Urbana Ivy, Dean (CSE & Allied branches), Mother Teresa Institute of Engg and
Technology, Melumoi (Post), Palamaner - 517408. Mail id: Mail id: urbana23@gmail.com.

3S. Senthil Kumar, Assistant Professor, Artificial Intelligence and Data Science, Karpagam
Academy of Higher Education, Deemed to be University, Coimbatore. Mail id:
skumsarsk@gmail.com.

Abstract

The rapid escalation of data volume, variety, and velocity has necessitated the adoption of
scalable and distributed computing frameworks to support artificial intelligence (Al) workloads
across diverse industrial and research domains. This chapter presents a comprehensive
comparative study of PySpark and Dask, two leading open-source frameworks designed to handle
big data and parallelized Al tasks in distributed environments. The focus lies on the architectural
foundations, performance optimization techniques, and the ability of each framework to manage
data shuffling, resource utilization, and fault tolerance in large-scale Al pipelines. Through the
exploration of deployment strategies—ranging from standalone systems to cloud-native clusters—
this work analyzes execution efficiency, scalability under heavy computational loads, and
integration with popular deep learning libraries such as TensorFlow and PyTorch. The chapter
further highlights practical considerations for benchmarking, diagnostics, and system monitoring,
providing a technical foundation for selecting the appropriate framework based on workload
characteristics and infrastructure constraints. By addressing existing research gaps in
interoperability, memory efficiency, and real-world deployment practices, this contribution offers
critical insights for data scientists, system architects, and Al practitioners working in distributed
and data-intensive computational settings.

Keywords: Distributed Computing, PySpark, Dask, Big Data, Artificial Intelligence, Deep
Learning Integration

Introduction

The proliferation of digital technologies and the accelerated expansion of data-generating
sources have led to the emergence of big data as a central focus in computational science and
industrial innovation [1]. From sensor networks and social media streams to biomedical imaging
and financial transactions, data is being produced at scales that far exceed the capabilities of
traditional computing systems [2]. The defining characteristics of big data—volume, velocity,


mailto:vineeth32@gmail.com
mailto:urbana23@gmail.com
mailto:skumsarsk@gmail.com

variety, veracity, and value—necessitate the adoption of distributed and parallelized processing
architectures [3]. These architectures must not only support efficient data ingestion and storage
but also enable scalable analytics, real-time querying, and Al-driven decision-making [4]. The
convergence of big data with artificial intelligence (Al) has further heightened the demand for
frameworks capable of executing complex models across vast, heterogeneous datasets. In this
context, distributed computing tools such as PySpark and Dask have emerged as critical enablers
for managing and operationalizing Al workloads in modern data ecosystems [5].

PySpark, the Python API for Apache Spark, has gained wide adoption due to its robust
distributed data processing capabilities, high-level abstractions, and support for in-memory
computations [6]. Its ability to integrate with big data storage platforms, batch and stream
processing engines, and machine learning libraries positions it as a comprehensive framework for
large-scale data analytics [7]. On the other hand, Dask is a Python-native parallel computing
library that provides dynamic task scheduling and distributed execution while maintaining
compatibility with familiar libraries such as Pandas, NumPy, and Scikit-learn [8]. Designed for
flexibility and modularity, Dask allows users to scale their computations from single machines to
multi-node clusters with minimal code modification. While both PySpark and Dask serve
overlapping domains, they differ significantly in terms of architecture, performance, ease of use,
and ecosystem integration [9]. An in-depth comparative study is essential to determine their
suitability for various Al applications involving large and complex datasets [10].

The growing integration of Al and machine learning into big data workflows introduces new
challenges related to data movement, task orchestration, computational overhead, and model
deployment [11]. Al workloads, particularly those involving deep neural networks or ensemble
methods, often require multiple iterations, intermediate transformations, and large memory
footprints [12]. These factors place increased pressure on the underlying infrastructure to
efficiently manage computation, storage, and communication across distributed nodes [13].
PySpark addresses these requirements through its DAG-based execution model, resilient
distributed datasets (RDDs), and support for fault-tolerant operations. It leverages JVM-based
execution and integrates seamlessly with existing Hadoop ecosystems, making it suitable for
enterprise environments with pre-established data pipelines [14]. In contrast, Dask adopts a
dynamic, Python-centric approach with fine-grained control over task scheduling and execution.
Its lazy evaluation model enables optimized computation graphs that can be tuned for specific
hardware configurations, including CPU-bound and GPU-accelerated environments [15].



